Fe-Mn-Tb (Iron-Manganese-Terbium)

V. Raghavan

The previous review of this system by [1992Rag] was limited to a summary of the lattice parameter variation of the continuous solid solutions along the $TbFe_2$ - $TbMn_2$ and Tb_6Fe_{23} - Tb_6Mn_{23} joins. Ilyushin et al. [1994IIy] determined the phase relationships along the $TbFe_2$ - $TbMn_2$ join as a function of pressure up to 8 GPa.

Binary Systems

The Fe-Mn phase diagram [1993Oka] has no intermediate phases. The face-centered-cubic phases γ Fe and γ Mn form a continuous solid solution. In the Fe-Tb system [Massalski2], there are four intermediate phases: the Th₂Ni₁₇type hexagonal and the Th₂Zn₁₇-type rhombohedral modifications of Tb₂Fe₁₇, the Th₆Mn₂₃-type cubic phase Tb₆Fe₂₃, the PuNi₃-type rhombohedral phase TbFe₃, and the MgCu₂-type cubic phase TbFe₂. The Mn-Tb phase diagram [Massalski2] shows three intermediate phases: the ThMn₁₂type tetragonal phase TbMn₁₂, the Th₆Mn₂₃-type cubic phase Tb₆Mn₂₃, and the MgCu₂-type cubic phase TbMn₂.

Ternary Phase Equilibria

With starting metals of purity of 99.99%, [1994Ily] levitation melted under Ar atm 13 alloy compositions along the TbFe₂-TbMn₂ join. The samples were then powdered and subjected to a high pressure of 1-8.0 GPa. The structure of the synthesized alloys was determined at ambient temperature by x-ray powder diffraction. At atmospheric pressure, the structure of all compositions $\text{Tb}(\text{Fe}_{1-x}\text{Mn}_x)_2$ is of the *C*15 cubic type. However, a detailed analysis of the x-ray patterns showed a rhombohedral distortion in the range $x \sim$ 0 to 0.3. For the range $x \sim 0.3$ to 0.5, the distortion becomes more complex (closer to monoclinic). For $x \sim 0.5$ to 1.0, the alloys have the ideal cubic structure. At the TbMn₂ end, the cubic *C*15 phase is stable up to ~3 GPa of pressure. Above 6 GPa, the hexagonal *C*14 phase is stable. In between, a (*C*14 + *C*15) two-phase mixture prevails. The pressurecomposition diagram constructed by [1994IIy] at room temperature is shown in Fig. 1.

References

- **1992Rag:** V. Raghavan: "Fe-Mn-Tb (Iron-Manganese-Terbium)" in *Phase Diagrams of Ternary Iron Alloys. Part 6*, Ind. Inst. Metals, Calcutta, India, 1992, p. 967.
- **1993Oka:** H. Okamoto: "Fe-Mn (Iron-Manganese)" in *Phase Diagrams of Binary Iron Alloys*, H. Okamoto, ed., ASM International, Materials Park, OH, 1993, pp. 203-13.
- 1994Ily: A.S. Ilyushin, I.A. Nikanorova, A.V. Tsvyashchenko, M.A.A. Gudaev, S. Lei, and Z. Guien: "Phase Diagram of the Quasi-Binary System Tb(Fe_{1-x}Mn_x)₂ Synthesized at High Pressures," *Vestn. Mosk. Univ. Ser. 3: Fiz. Astron.*, 1994, 35(1), pp. 101-02 (in Russian); TR: *Moscow Univ. Phys. Bull.*, 1994, 49(1), pp. 100-101.

Fig. 1 Fe-Mn-Tb pressure-composition diagram for $Tb(Fe_{1-x}Mn_x)_2$ alloys at ~20 °C [1994Ily]